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Summary

Goals: Extract PDE of a system from dynamical data using PDE-FIND, improve its 
robustness to noise & compare with DMD.

1. Use DMD to make future state predictions + interpret results
2. Improving robustness of PDE-FIND to noisy data

a. Different sparsity techniques
b. Hyperparameter optimization 
c. Denoising methods 

i. Error plots
ii. PDE-FIND coefficients
iii. PDE-FIND simulated results
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System Studied: Reaction-Diffusion λ-Ω model
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u(x,y,t) v(x,y,t)

https://docs.google.com/file/d/1ZDj7Q_lbFFCoyyeFhdh-udpo9qvqfnIr/preview


What is PDE FIND?
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Rudy, S. H., Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2017). Data-driven discovery of partial differential 
equations. Science Advances, 3(4), e1602614.



What is DMD?
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Kutz, J. N., Brunton, S. L., Brunton, B. W., & Proctor, J. L. (2016). Dynamic mode decomposition: data-driven 
modeling of complex systems. Society for Industrial and Applied Mathematics.



DMD Modes
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DMD Future State Prediction

    : Discrete time DMD eigenvalues

    : DMD modes

    : vector with magnitude of modes
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DMD Prediction Results: V(x,y,t)
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https://docs.google.com/file/d/15Q7sCvrszM9HU0WOReC9lJjSVQvU9mou/preview


Result
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DMD Error Plots
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PDE-FIND Results: No Noise 
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uxx uyy vxx vyy u v uv2 u2v u3 v3

ut

Actual 0.5 0.5 1 -1 2 -1 2

Noise Free 0.5 0.5 1 -1 2 -1 2

vt

Actual 0.8 0.8 1 -2 -1 -2 -1

Noise Free 0.8 0.8 1 -2 -1 -2 -1

https://docs.google.com/file/d/1ZDj7Q_lbFFCoyyeFhdh-udpo9qvqfnIr/preview


PDE-FIND Results: Noisy Data 0.5%
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uxx uyy vxx vyy u v uv2 u2v u3 v3

ut

Actual 0.5 0.5 1 -1 2 -1 2

Noisy data 0.18 0.41 1.32 -0.22 1.28

vt

Actual 0.8 0.8 1 -2 -1 -2 -1

Noise data -0.43 -0.21 -1.16 -1.16 0.35

https://docs.google.com/file/d/11qbFBs8lEPzpapXd8ezYGomtt5qitq-G/preview


Sparse Regression Methods
● Lasso Regression: Convex relaxation of Subset Selection problem using L-0 

norm is L-1 Norm

● Elastic Net Regression

● Sequential Threshold Ridge Regression (STRidge)

● Forward Backward Greedy Algorithm
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Sparse Regression Methods: Results

Thus, the STRidge method has the best empirical performance for PDE-FIND of 
any sparse regression algorithm tested in the work.
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uxx uyy vxx vyy u v uv2 u2v u3 v3

vt

Actual 0.8 0.8 1 -2 -1 -2 -1

Lasso 0.043 0.031 0.659 0.642 0.040 0.651 -1.965 0.000 -1.964 -0.636

Elastic Net 0.000 0.000 0.799 0.799 0.000 1.000 -1.999 -1.000 -1.999 -1.000

STRidge 0.800 0.800 1.000 -1.999 -1.000 -1.999 -1.000

Greedy 0.799 0.800 0.000 0.999 -1.999 -1.000 -1.999 -1.000



Hyperparameter Optimization

● We look at the STRidge algorithm – 
lambda and tolerance

● Burger’s Equation: Derived from the 
Navier Stokes equations for the velocity 
field by dropping the pressure gradient 
term

● Evaluate the performance using:
○ Pearson Correlation Coefficient
○ L2 norm of error
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Burger’s Equation Data



Hyperparameter Optimization: Results
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Denoising Methods for PDE-FIND

● Truncated Singular Value Decomposition (TSVD)

● Total-Variation based method

● Wiener-Tikhonov
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Denoising comparison
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Parameter prediction with 0.5% noise
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uxx uyy vxx vyy u v uv2 u2v u3 v3

ut

Actual 0.5 0.5 1 -1 2 -1 2

SVD 0.220 0.221 0.561 0.226 -0.493 1.626 -0.586

TV 0.054 0.051 0.248 0.364 1.396 -0.279 1.364

WT 0.500 0.500 1.000 -1.000 2.001 -1.000 2.001

vt

Actual 0.8 0.8 1 -2 -1 -2 -1

SVD 0.287 0288 -0.281 0.121 -1.455 -1.451

TV 0.064 0.079 -0.392 -0.124 -1.231 -1.241 0.254

WT 0.800 0.800 1.000 -2.001 -1.000 -2.001 -1.000



Simulation errors
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Noise = 0.5%

Noise = 5% Noise = 1%



Denoising: DMD 

● Forward-Backward DMD (fbDMD)

● Optimized DMD
○ Use total least squares (TLS) regression to reduce reconstruction error

● Higher order DMD (hoDMD)
○ Useful when # of snapshots < dimension of each snapshot
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Stability considerations
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Discrete-time eigenvalues with hoDMD Discrete-time eigenvalues with fbDMD 



DMD Denoising results

23



Comparison of PDE-FIND predictions
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Mean relative error (%) Standard deviation (%)

0.5% noise

Denoising with TSVD 1.085 0.939

Denoising with hoDMD 0.515 0.406

1% noise

Denoising with TSVD 4.384 3.806

Denoising with hoDMD 2.347 1.961

5% noise

Denoising with TSVD 67.001 56.809

Denoising with hoDMD 39.497 38.154



Conclusions

● PDE-FIND works properly without noise
● DMD helps interpret modes & make predictions few timesteps into future
● Effects of sparsity techniques

○ STRidge works best for PDE-FIND

● Effects of hyperparameters
○ PDE-FIND insensitive to exact values of regularization parameter and tolerance as long as 

both are reasonably small

● In presence of noise: PDE-FIND very sensitive → Incorrect results
○ If we know noise characteristics: Wiener Tikhonov 
○ If we don’t know noise statistics: Higher order DMD with TSVD and TLS

● Future work
○ Dealing with higher noise levels?
○ If possible, use physical information from the system e.g can add regularization penalties to 

enforce conservation laws (A2 = u2 + v2) 25
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Thank You!
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Appendix
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Gray Scott Model

Another 2D reaction diffusion model but produces a diverse array of patterns, depending 
on initial conditions and parameters

ru , rv = Diffusion rates of the two species

k = Rate of conversion of V to P

f = feed rate of U and kill rate of U, V and P
29



Gray Scott: PDE-FIND parameter predictions 
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1 uxx uyy vxx vyy u v uv2

ut

Actual 0.025 0.01 0.01 - - -0.025 - -1

Noise Free 0.025 0.01006 0.01002 - - -0.02499 - -0.999834

0.5% noise 0.025002 0.009815 0.009846 - - -0.025709 - -0.996995

1 % noise 0.25022 0.009270 0.009344 - - -0.988428 - -0.027894

vt

Actual - - - 0.005 0.005 - -0.085 1

Noise Free - - - 0.005002 0.005006 - -0.084988 0.999980

0.5% noise - - - 0.004919 0.004930 - -0.085084 0.998909

1% noise - - - 0.004697 0.004706 - -0.085394 0.996312



PDE-FIND: Noisy Data 2 
u_t û_t v_t ^v_t

u_xx 0.5 0.220 0 0

u_yy 0.5 0.221 0 0

v_xx 0 0 0.8 0.798

v_yy 0 0 0.8 0.798

u 1 0.561 0 0

v 0 0.226 -1 0.99

uv^2 -1 -0.493 -2 -2.00

u^2v 2 1.626 1 -1

u^3 -1 -0.586 -2 -1.999

v^3 2 1.601 1 -0.991

Un = U + noise*std(U)*np.random.randn(n,n,steps)

Vn = np.sqrt(A-U**2)*np.sign(V)
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Error vs. Simulation time
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Original

Predicted
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https://docs.google.com/file/d/1ZDj7Q_lbFFCoyyeFhdh-udpo9qvqfnIr/preview
https://docs.google.com/file/d/1rkzKjTRaeZn3MoCYDXjco-v2mDksVrn4/preview


Sparse Regression Methods: Results
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uxx uyy vxx vyy u v uv2 u2v u3 v3

ut

Actual 0.5 0.5 1 -1 2 -1 2

Lasso 0.499 0.499 0.000 0.000 1.000 0.000 -1.000 1.999 -1.000 1.999

Elastic Net 0.500 0.499 0.000 0.000 1.000 0.000 -1.000 1.999 -1.000 1.999

STRidge 0.500 0.500 1.000 -1.000 1.999 -1.000 1.999

Greedy 0.500 0.500 1.000 0.000 -1.000 1.999 -1.000 1.999



Sparse Regression Methods
● Subset Selection: Combinatorial brute-force search across all possible term 

combinations optimized by cardinality-penalized estimators: L-0 Norm 
(NP-hard)

● Lasso Regression: Convex relaxation of L-0 optimization problem is L-1 Norm

● Elastic Net Regression:
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Hyperparameter Optimization

Varying regularization parameter (lambda) and tolerance
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Hyperparameter Optimization:MSE
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Denoising: SVD

● Truncated SVD (or POD)
● Already implemented in PDE-FIND
● Select 1st r dominant singular values to create low-rank approximation for 

data matrix X

● Decide on optimal rank truncation r to minimize error:
○ Plot all singular values
○ Some trial and error needed
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Denoising: Weiner Tikhonov Regularization
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Denoising: Weiner Tikhonov Regularization

50% Noise     5% Noise 40



Denoising: Weiner Tikhonov Regularization
Error Plot - 5% Noise
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Denoising: Total Variation 

● B is the noisy sample.
● TV(X) is:
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