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Summary

Goals: Extract PDE of a system from dynamical data using PDE-FIND, improve its
robustness to noise & compare with DMD.

1.  Use DMD to make future state predictions + interpret results

2. Improving robustness of PDE-FIND to noisy data
a. Different sparsity techniques
b. Hyperparameter optimization
c. Denoising methods
i. Error plots
ii. PDE-FIND coefficients
iii. PDE-FIND simulated results



System Studied: Reaction-Diffusion A-Q model
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What is PDE FIND?
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Rudy, S. H., Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2017). Data-driven discovery of partial differential
equations. Science Advances, 3(4), e1602614.




What is DMD?

Experiment Collect Data DMD
a) Diagnostics
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Kutz, J. N., Brunton, S. L., Brunton, B. W., & Proctor, J. L. (2016). Dynamic mode decomposition: data-driven
modeling of complex systems. Society for Industrial and Applied Mathematics.




DMD Modes
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DMD Future State Prediction

~ In()
YT A

Xpmp(t) = ¢ + diag(e®) * b

:/1:: Discrete time DMD eigenvalues
¢: DMD modes

b : vector with magnitude of modes



DMD Prediction Results: V(x,y,t

Original Data DMD Prediction
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https://docs.google.com/file/d/15Q7sCvrszM9HU0WOReC9lJjSVQvU9mou/preview

Result
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DMD Error Plots

DMD Prediction with 5% Noise

0 100 200 300 400

500

Frobenius Norm

1000

V Error

[ e il No Noise
0 2 4 10
Time
U Error

10



PDE-FIND Results: No Noise

u, u, Ve Viy uv u’v
Actual 0.5 0.5 -1 2
ut
Noise Free 0.5 0.5 -1 2
Actual 0.8 0.8 -2 -1
Vt
Noise Free 0.8 0.8 -2 -1
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PDE-FIND Results: Noisy Data 0.5%
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Sparse Regression Methods

Lasso Regression: Convex relaxation of Subset Selection problem using L-0

norm is L-1 Norm
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Sequential Threshold Ridge Regression (STRidge)
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Forward Backward Greedy Algorithm
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Sparse Regression Methods: Results

u_ u, V. Viy u v uv? u?v u’ v3
Actual 0.8 0.8 1 -2 -1 -2 -1
Lasso 0.043 0.031 0.659 0.642 0.040 0.651 -1.965 | 0.000 | -1.964 | -0.636
Elastic Net 0.000 0.000 0.799 0.799 0.000 1.000 | -1.999 | -1.000 | -1.999 @ -1.000
STRidge 0.800 0.800 1.000 | -1.999 | -1.000 | -1.999 | -1.000
Greedy 0.799 0.800 0.000 0.999 | -1.999 @ -1.000 & -1.999 | -1.000

Thus, the STRidge method has the best empirical performance for PDE-FIND of
any sparse regression algorithm tested in the work.



Hyperparameter Optimization

We look at the STRidge algorithm -
lambda and tolerance

STRidge(®, Uy, A, tol, iters)
Burger’s Equation: Derived from the
Navier Stokes equations for the velocity
field by dropping the pressure gradient
term

Ut + Uy — €Ugy = 0

Evaluate the performance using:
o Pearson Correlation Coefficient
o L2 norm of error

Burger’s Equation Data
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Lambda

Hyperparameter Optimization: Results

Hyperparameter Optimization: Heatmap of PCC Hyperparameter Optimization: Heatmap of Error
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Denoising Methods for PDE-FIND

e Truncated Singular Value Decomposition (TSVD)
X=UxvVT — X=U3%VT
e Total-Variation based method

argmin {||X — B||* + 2)\TV(X)}

Z

e Wiener-Tikhonov

H*(£)S(f)
G —
(f) [H(f)”S(f)+N ()
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Denoising comparison
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Parameter prediction with 0.5%
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Simulation errors
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Denoising: DMD

e Forward-Backward DMD (fbDMD)

A= (As4)'7
e Optimized DMD

o Use total least squares (TLS) regression to reduce reconstruction error

||Y — Xreconstructed | | F
A =argmin ||Y — AX||
e Higher order DMD (hoDMD)

o Useful when # of snapshots < dimension of each snapshot

X1 = Ax,, X9 = A1xg + A2x; 4
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Stability considerations

Imaginary part

Imaginary part
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Discrete-time eigenvalues with fiobDMD
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[Utrue(t) = U(t)IF
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DMD Denoising results
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Comparison of PDE-FIND predictions

Denoising with TSVD

Denoising with hoDMD

Denoising with TSVD

Denoising with hoDMD

Denoising with TSVD

Denoising with hoDMD

Mean relative error (%)
0.5% noise
1.085
0.515
1% noise
4.384
2.347
5% noise
67.001
39.497

Standard deviation (%)

0.939
0.406

3.806
1.961

56.809
38.154
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Conclusions

e PDE-FIND works properly without noise
e DMD helps interpret modes & make predictions few timesteps into future

e Effects of sparsity techniques
o STRidge works best for PDE-FIND

e Effects of hyperparameters
o PDE-FIND insensitive to exact values of regularization parameter and tolerance as long as
both are reasonably small
e In presence of noise: PDE-FIND very sensitive — Incorrect results
o If we know noise characteristics: Wiener Tikhonov
o If we don’t know noise statistics: Higher order DMD with TSVD and TLS
e Future work
o Dealing with higher noise levels?

o If possible, use physical information from the system e.g can add regularization penalties to
enforce conservation laws (A2 = u? + v?) 25
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Thank You!
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Appendix
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Gray Scott Model

Another 2D reaction diffusion model but produces a diverse array of patterns, depending
on initial conditions and parameters

U+2V =3V w = r,Viu—uv’ + f(1 —u)
V - P Uy rUV20+u02—(f+k)U

r,, r, = Diffusion rates of the two species
k = Rate of conversion of V to P

f = feed rate of U and kill rate of U, V and P

29



Gray Scott:
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0.5% noise
1 % noise
Actual
Noise Free
0.5% noise

1% noise

PDE-FIND parameter predictions

0.025

0.025

0.025002

0.25022

XX

0.01

0.01006

0.009815

0.009270

Uyy Vax
0.01

0.01002

0.009846

0.009344

0.005

0.005002
0.004919
0.004697

A
yy

0.005
0.005006
0.004930

0.004706

-0.025

-0.02499

-0.025709

-0.988428

-0.085

-0.084988

-0.085084

-0.085394

-0.999834

-0.996995

-0.027894

0.999980

0.998909

0.996312

30



PDE-FIND: Noisy Data 2

u_t a_t v_t Av_t
u_xx 0.5 0.220 0 0
u_yy 0.5 0.221 0 0
V_XX 0 0 0.8 0.798
v_yy 0 0 0.8 0.798
u 1 0.561 0 0
v 0 0.226 -1 0.99
uv/2 -1 -0.493 -2 -2.00
ur2v 2 1.626 1 -1
ut3 -1 -0.586 -2 -1.999
vA3 2 1.601 1 -0.991

Un = U + noise*std(U) *np.random.randn (n,n, steps)

A? = u? + 2

Vn

np.sqrt (A-U**2) *np.sign (V)

Noise = 0.005
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Error vs. Simulation time

Error, (t) — | |U(I, 5 t) — Upredicted (:7 ¥ t) | |fro
E’T‘T’O'r‘v (t) = | |’U(Z, o t) — 'Upfr'edicted(:7 “ t) | |fro
I Erl;oru |
se Error f
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https://docs.google.com/file/d/1ZDj7Q_lbFFCoyyeFhdh-udpo9qvqfnIr/preview
https://docs.google.com/file/d/1rkzKjTRaeZn3MoCYDXjco-v2mDksVrn4/preview

Sparse Regression Methods: Results
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Sparse Regression Methods

e Subset Selection: Combinatorial brute-force search across all possible term
combinations optimized by cardinality-penalized estimators: L-0 Norm
(NP-hard)

n

i / 'u'rT'} Alwllg,
min Zl (i, w ' z;) + AlJwl|o,
| —

e Lasso Regression: Convex relaxation of L-0 optimization problem is L-1 Norm

weRP £

7
min Z £(y;, U.-'T.'l..',‘) + A||w]|1,
i=1

e Elastic Net Regression:

n

. O 7 be l—a(,..112
min 2((;,,~.,u= i) + A [allw|ly + 152 [[w]3] .
| —
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Lambda

Hyperparameter Optimization

Hyperparameter Optimization: PCC vs Lambda
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Hyperparameter Optimization:MSE

Hyperparameter Optimization: Heatmap of MSE
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Denoising: SVD

e Truncated SVD (or POD)

e Already implemented in PDE-FIND

e Select 1st r dominant singular values to create low-rank approximation for
data matrix X

X=UzvT — X=U,5%, VT

e Decide on optimal rank truncation r to minimize error:
o Plot all singular values
o Some trial and error needed

38



Denoising: Weiner Tikhonov Regularization

Plu, ) = i H*(u, v)8(u, v) }G(u ’)
’ LS, (u, v)|H (u, v)l2 + S, (i, v) ’

i H*(u, v) .
= - G(u, v) (5.8-2)
UH (e, 0)] + Sy, 0)/S(u, v)

_ [ 1 |H (u, v)[ }G(u 0)
L H(u,v) [H(u, v)[2 + S,(u, v)/S4(u, v) ’

H(u.v) = degradation function

H*(u, v) = complex conjugate of H(u, v)

\H(u.v)|" = H*(u. v)H (1, v)

S,(t.v) = |N(u, v)l2 = power spectrum of the noise [see Eq. (4.2-20)]
Si(u,v) = |F(u. v)!2 = power spectrum of the undegraded image.
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Denoising: Weiner Tikhonov Regularization

50% Noise 5% Noise
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Denoising: Weiner Tikhonov Regularization

Error Plot - 5% Noise
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Denoising: Total Variation

argmin {HX —B|’ + 2)\TV(X)}

e B is the noisy sample.
TV(X) is:

X eR™® TV,(X) = 22/ E;?;f {(1Xi; — Xiv1] + | Xij — Xijul}
T Z:—ll |X‘i=n = X'i+l,n.| - Z;—_ll |Xm,j T Xm,j+l|-
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